PROJECTILE MOTION

Calculations: Determine Horizontal
Distance Traveled by Rocket
I. Determine

Vo
$V_{0}=$ Rocket Length/Launch Time
$V_{0}=(1 /$ in $\times 2.54 \mathrm{~cm} / \mathrm{in}) /(0.0254 \mathrm{~s})$
$V_{0}=1,100 \mathrm{~cm} / \mathrm{s}=\mathbf{I I} \mathbf{~ m} / \mathbf{s}$

PROJECTILE MOTION

Calculations

2. Determine $\mathrm{V}_{0 y}$ and $\mathrm{V}_{0 \mathrm{x}}$

For a launch angle of 65°

$$
\begin{aligned}
& V_{0 y}=V_{0} \sin \left(65^{\circ}\right)=(11 \mathrm{~m} / \mathrm{s}) \sin \left(65^{\circ}\right)=\mathbf{9 . 9 6 9} \mathbf{~ m} / \mathrm{s} \\
& V_{0 x}=V_{0} \cos \left(65^{\circ}\right)=(11 \mathrm{~m} / \mathrm{s}) \cos \left(65^{\circ}\right)=\mathbf{4 . 6 4 8} \mathbf{~ m} / \mathrm{s}
\end{aligned}
$$

PROJECTILE MOTION

Calculations

4. Determine horizontal distance traveled $\left(\mathrm{D}_{\mathrm{x}}\right)$

The horizontal distance traveled is equal to the rocket's horizontal initial velocity, multiplied by the total travel time.
$D_{x}=V_{0 x} \times T$
$D_{\times}=4.648 \mathrm{~m} / \mathrm{s} \times 1.977 \mathrm{~s}=\mathbf{9 . 1 8 9} \mathbf{~ m}$

