PROJECTILE MOTION

Calculations: Determine Horizontal Distance Traveled by Rocket

I. Determine

 V_0

 V_0 = Rocket Length/Launch Time

 $V_0 = (11 \text{in} \times 2.54 \text{cm/in})/(0.0254 \text{ s})$

 $V_0 = 1,100 \text{ cm/s} = 11 \text{ m/s}$

PROJECTILE MOTION

Calculations

2. Determine V_{0y} and V_{0x}

For a launch angle of 65°

$$V_{0y} = V_0 \sin(65^\circ) = (11 \text{ m/s}) \sin(65^\circ) = 9.969 \text{ m/s}$$

$$V_{0x} = V_0 \cos(65^\circ) = (11 \text{ m/s})\cos(65^\circ) = 4.648 \text{ m/s}$$

PROJECTILE MOTION

Calculations

3. Determine total flight time (T)

The total flight time is equal to twice the time it takes for the rocket to reach its maximum height. At the maximum height, the rocket's velocity in the vertical direction is zero ($V_{\text{N}_{\text{M}}}$) wheight = 0).

$$V_{y@max\ height} = V_{0y} + a(T/2)$$

$$T = 2(V_{y@max height} - V_{0y})/a$$

$$T = 2(0 \text{ m/s} - 9.969 \text{ m/s})/(-9.806 \text{ m/s}^2) = 1.977 \text{ s}$$

PROJECTILE MOTION

Calculations

4. Determine horizontal distance traveled (D_x)

The horizontal distance traveled is equal to the rocket's horizontal initial velocity, multiplied by the total travel time.

$$D_{\times} = V_{0\times} \times T$$

$$D_x = 4.648 \text{ m/s} \times 1.977 \text{ s} = 9.189 \text{ m}$$